• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Drug Delivery Business

  • Clinical Trials
  • Research & Development
  • Drug-Device Combinations
  • FDA
  • Pharmaceuticals
  • Policy

MIT researchers think they’ve found a way to get more particles through a syringe

July 8, 2020 By Sean Whooley

Image: Felice Frankel and Christine Daniloff, MIT

Researchers at the Massachusetts Institute of Technology (MIT) are touting a computational model that could prevent microparticle clogging during injections.

Microparticles, which are about the size of a grain of sand, can be difficult to inject if they get clogged in a typical syringe. The research team at MIT developed this new model that determines the optimal design for injectability, analyzing a number of factors including shapes and sizes of the particles.

Other factors considered include the viscosity of the solution in which the microparticles are suspended and the size and shape of the syringe and needle used to deliver. Particle size, particle concentration in the solution, solution viscosity and needle size proved to be the most important factors in the process.

According to a news release, the model offers a six-fold increase in the percentage of microparticles that can be successfully injected, and it gives the researchers hope that they can develop and test microparticles that could be used to deliver cancer immunotherapy drugs, among other potential applications.

“This is a framework that can help us with some of the technologies that we’ve developed in the lab and that we’re trying to get into the clinic,” MIT Koch Institute for Integrative Cancer Research scientist Ana Jaklenec said in the release.

The researchers developed an optimal shape for the syringe that resembles a nozzle with a wide diameter tapered toward the tip. In testing this syringe, they found that the percentage of particles delivered increased from 15% to nearly 90%.

Now, the team believes that, on top of cancer immunotherapy drugs, the microparticles can be used to deliver a variety of vaccines or drugs, including small-molecule drugs and biologics.

“This is another way to maximize the forces that are acting on the particles and pushing the particles toward the needle,” MIT graduate student & lead author of a paper on the research Morteza Sarmadi said. “It’s a promising result that shows that there’s huge room for improvement in the injectability of microparticle systems.”

Funding for the MIT research came from the Bill and Melinda Gates Foundation, the Koch Institute Support (core) Grant from the National Cancer Institute, and a National Institutes of Health Ruth L. Kirschestein National Research Service Award.

Filed Under: Discovery, Drug-Device Combinations, Featured, Immunotherapy, Research & Development Tagged With: Massachusetts Institute of Technology

IN CASE YOU MISSED IT

  • BD stock up on Street-beating preliminary quarterly revenue numbers
  • Locate Bio lands FDA breakthrough nod for bone infection device
  • PerkinElmer to acquire Oxford Immunotec
  • Evonik buys polymers business from Durect Corp.
  • New Croatian notified body designated to European MDR

Primary Sidebar

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Need Drug Delivery Business News in a minute? We Deliver!
Drug Delivery Enewsletters get you caught up on all the mission critical news you need in med tech. Sign up today.

Tweets by DrugDeliveryNow

Footer

MassDevice Medical NETWORK

MassDevice
DeviceTalks
Medical Design & Outsourcing
Medical Tubing + Extrusion

DRUG DELIVERY BUSINESS NEWS

Subscribe to Drug Delivery News
Advertise with us
About
Contact us
Privacy
Add us on FacebookFollow us on TwitterConnect with us on LinkedIn

Copyright © 2021 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Advertise | Privacy Policy | RSS